To find the third angle in a triangle, we can use the fact that the sum of the angles in a triangle is always 180°.
Given the angles are 22° and 46°, we can calculate the third angle as follows:
\[ \text{Third angle} = 180° - (22° + 46°) = 180° - 68° = 112° \]
Now, to determine the type of triangle based on the angles:
- An acute triangle has all angles less than 90°.
- A right triangle has one angle equal to 90°.
- An obtuse triangle has one angle greater than 90°.
Since the third angle is 112°, which is greater than 90°, this means the triangle is an obtuse triangle.
So the correct response is:
The third angle measure is 112°, and the triangle is an obtuse triangle.