To find the height of the pyramid, we first need to find the length of r.
Using the Pythagorean theorem, we can find r:
r^2 = s^2 - e^2
r^2 = 24^2 - 25^2
r^2 = 576 - 625
r^2 = -49
Since we cannot have a negative length, we know that there's an error in the calculations somewhere.
Please check the given values for e and s, or provide any additional information if available.
An illustration shows a square pyramid with labeled parts. The left, front, and right faces of the pyramid and base are visible. The back face is not visible, but its position is indicated by a dashed line. The back base edge is not visible, but its position is indicated by a dashed line. The left base edge is labeled a. The back left lateral edge is labeled e. A dotted line extends from the interior of the vertex straight down to the center of the base and is labeled h. A right angle is indicated where the dotted height line meets the base. Another dotted line extends from the center of the base where the height line meets to the center of the right base edge and is labeled r. A dotted line extends from the right base edge straight up the center of the right face of the prism and meets the height line at the vertex. The dotted slant height line is labeled s.
For the square pyramid, the lateral edge length, e , is 25 in., and the slant height, s , is 24 in. Find the height of the pyramid, h . Round the answer to the nearest whole number. Hint: Before finding the length of h , you will first need to find the length of r
.
(1 point)
The height of the square pyramid is ___ in
1 answer