Asked by ll
An arithmetic series has a first term of -4 and a common difference of 1. A geometric series has a first term of 8 and a common ratio of 0.5. After how many terms does the sum of the arithmetic series exceed the sum of the geometric series?
Answers
Answered by
ll
anyone????
Answered by
ll
please
Answered by
ll
can anyone help?
Answered by
Reiny
for the AS
S<sub>n</sub> = n/2(-8 + n-1)
= n/2(n-9)
for a GS
S<sub>n</sub> = 8(1-.5^n)/(1-.5)
so n/2(n-9) > 8(1-.5^n)/(1-.5)
n/2(n-9) > 16(1-.5^n)
n^2 - 9n > 32 - 32(.5^n)
32(.5)^n + n^2 - 9n - 32 > 0
set it equal to zero and attempt to solve it.
This would be a very nasty equation to solve, except you know that n has to be a whole number, so do some trial and error calculations.
eg. n = 2 we get -38 > 0 which is false
if n = 5 we get -44 > 0 which is false
if n = 20 we get 188 > 0 which is true
So somewhere between n=5 and n=20 there should be a solution
(n=12 ---> 4.0078 > 0 mmmmhhh?)
S<sub>n</sub> = n/2(-8 + n-1)
= n/2(n-9)
for a GS
S<sub>n</sub> = 8(1-.5^n)/(1-.5)
so n/2(n-9) > 8(1-.5^n)/(1-.5)
n/2(n-9) > 16(1-.5^n)
n^2 - 9n > 32 - 32(.5^n)
32(.5)^n + n^2 - 9n - 32 > 0
set it equal to zero and attempt to solve it.
This would be a very nasty equation to solve, except you know that n has to be a whole number, so do some trial and error calculations.
eg. n = 2 we get -38 > 0 which is false
if n = 5 we get -44 > 0 which is false
if n = 20 we get 188 > 0 which is true
So somewhere between n=5 and n=20 there should be a solution
(n=12 ---> 4.0078 > 0 mmmmhhh?)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.