To add the polynomial expressions \(3 - 2p - 5p^2\) and \(p^4 - 3p + 4\), you align the like terms as follows:
-
Write down the two expressions: \[ (3 - 2p - 5p^2) + (p^4 - 3p + 4) \]
-
Combine like terms:
- The constant terms: \(3 + 4 = 7\)
- The linear terms (with \(p\)): \(-2p - 3p = -5p\)
- The quadratic term (with \(p^2\)): only \(-5p^2\) from the first polynomial
- The quartic term (with \(p^4\)): only \(p^4\) from the second polynomial
-
Combine these results: \[ p^4 - 5p^2 - 5p + 7 \]
So, the resulting polynomial after addition is: \[ p^4 - 5p^2 - 5p + 7 \]