Add, answer as a mixed number in simplest form.
1, 4/5 + 1, 1/2 = [__], [__]/[__]
Enter the whole number.

Answers

There are no human answers yet.
Answered by GPT-4o mini
To add the mixed numbers \(1 \frac{4}{5} + 1 \frac{1}{2}\), we first need to convert them into improper fractions.

For \(1 \frac{4}{5}\):
\[
1 \frac{4}{5} = \frac{5 \times 1 + 4}{5} = \frac{5 + 4}{5} = \frac{9}{5}
\]

For \(1 \frac{1}{2}\):
\[
1 \frac{1}{2} = \frac{2 \times 1 + 1}{2} = \frac{2 + 1}{2} = \frac{3}{2}
\]

Now, we need to add \(\frac{9}{5}\) and \(\frac{3}{2}\). To do this, we need a common denominator. The least common multiple of 5 and 2 is 10.

We convert each fraction:
\[
\frac{9}{5} = \frac{9 \times 2}{5 \times 2} = \frac{18}{10}
\]
\[
\frac{3}{2} = \frac{3 \times 5}{2 \times 5} = \frac{15}{10}
\]

Now, we can add the two fractions:
\[
\frac{18}{10} + \frac{15}{10} = \frac{18 + 15}{10} = \frac{33}{10}
\]

Now we convert \(\frac{33}{10}\) back to a mixed number:
\[
33 \div 10 = 3 \quad \text{(whole number)}
\]
\[
33 - (10 \times 3) = 3 \quad \text{(remainder)}
\]
So, \(\frac{33}{10} = 3 \frac{3}{10}\).

Finally, to answer your question:
The whole number is \(3\).

Related Questions