In total, there are 5 consonants (B, C, D, F, G) out of the 8 options on the spinner.
To find out how many spins we can expect the spinner to land on a consonant, we divide the number of consonants by the total number of options and then multiply by the total number of spins:
5/8 * 160 = 100
Therefore, we can expect the spinner to land on a consonant 100 times out of 160 spins.
A spinner has eight equal-sized sections labeled A, B, C, D, E, F, G, and H. In 160 spins, how many spins can you expect the spinner to land on a consonant? (1 point)
The spinner is expected to land on a consonant ___ times.
3 answers
B, C, D, F, G, and H are the consonants out of the 8 options.
Apologies for the mistake. Let's correct that.
There are 6 consonants (B, C, D, F, G, H) out of the 8 options on the spinner.
To find out how many spins we can expect the spinner to land on a consonant, we divide the number of consonants by the total number of options and then multiply by the total number of spins:
6/8 * 160 = 120
Therefore, we can expect the spinner to land on a consonant 120 times out of 160 spins.
There are 6 consonants (B, C, D, F, G, H) out of the 8 options on the spinner.
To find out how many spins we can expect the spinner to land on a consonant, we divide the number of consonants by the total number of options and then multiply by the total number of spins:
6/8 * 160 = 120
Therefore, we can expect the spinner to land on a consonant 120 times out of 160 spins.