Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
A rotating beacon is located 1 kilometer off a straight shoreline. If the beacon rotates at a rate of 3 revolutions per minute,...Asked by Jon
A rotating beacon is located 1 kilometer off a straight shoreline. If the beacon rotates at a rate of 3 revolutions per minute, how fast (in kilometers per hour) does the beam of light appear to be moving to a viewer who is 1/2 kilometer down the shoreline.
I need to show work, so formatting answers in this manner would be most appreciated. Thanks in advance! :) :)
I need to show work, so formatting answers in this manner would be most appreciated. Thanks in advance! :) :)
Answers
Answered by
drwls
3 rev/min = 6 pi radians/min
Multiply that by the 1 km radial distance to get the speed the beam apparears to move at that distance:
6 pi x 1 = 18.85 km/min
Multiply that by 60 min/hr to get the spped in km per hour
Multiply that by the 1 km radial distance to get the speed the beam apparears to move at that distance:
6 pi x 1 = 18.85 km/min
Multiply that by 60 min/hr to get the spped in km per hour
Answered by
Reiny
I beg to differ with the usually correct drwls.
This is a related rate problem dealing with angular velocity, so trig will be needed.
Let the point on the shore be x km down the shoreline.
so we have a right angled triangle, let the angle at the lighthouse be ß
we are given dß/dt = 6pi/min
The tanß = x/1
and sec^2 ß(dß/dt) = dx/dt
when x = 1/2 and using Pythagoras I found sec^2 ß = 1.25
so 1.25(6pi) = dx/dt
so dx/dt = 23.5629 km/min
= 1413.72 km/h
This is a related rate problem dealing with angular velocity, so trig will be needed.
Let the point on the shore be x km down the shoreline.
so we have a right angled triangle, let the angle at the lighthouse be ß
we are given dß/dt = 6pi/min
The tanß = x/1
and sec^2 ß(dß/dt) = dx/dt
when x = 1/2 and using Pythagoras I found sec^2 ß = 1.25
so 1.25(6pi) = dx/dt
so dx/dt = 23.5629 km/min
= 1413.72 km/h
Answered by
drwls
Reiny is correct; I did not fully read the problem and assumed the shore was perpendicular to the beam
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.