Asked by Candice
A positive integer n is such that numbers 2n+1 and 3n+1 are perfect squares. Prove that n is divisible by 8.
thanks
thanks
Answers
Answered by
Reiny
I sort of "cheated" by running a quick computer program.
in the first 1 million values of n
I found only 3 values of n that satisfied your condition.
they were 40, 3960, and 388080
All 3 are divisible by 8
I can't think of a "mathematical" way to do you question.
in the first 1 million values of n
I found only 3 values of n that satisfied your condition.
they were 40, 3960, and 388080
All 3 are divisible by 8
I can't think of a "mathematical" way to do you question.
Answered by
Count Iblis
Modulo 8, a square can only be 0, 1 or 4:
0^2 = 0
1^2 = 1
2^2 = 4
3^2 = 1
4^2 = 0
The squares of 5, 6 and 7 are the same as the squares of 3, 2 and 1.
Since 2n + 1 is odd and is a square, it must be 1 modulo 8. So, Mod 8 we have:
2 n + 1 = 1 ------>
2 n = 0
So, we know that n is a multiple of 4, so we can be sure that n is even. But this means that 3n + 1 must be odd. Because 3 n + 1 is a square, it follows that 3 n + 1 Modulo 8 equals 1. So, Modulo 8 we have:
2 n + 1 = 1
3 n + 1 = 1
Subtracting gives (Modulo 8):
n = 0
So, n is a multiple of 8.
0^2 = 0
1^2 = 1
2^2 = 4
3^2 = 1
4^2 = 0
The squares of 5, 6 and 7 are the same as the squares of 3, 2 and 1.
Since 2n + 1 is odd and is a square, it must be 1 modulo 8. So, Mod 8 we have:
2 n + 1 = 1 ------>
2 n = 0
So, we know that n is a multiple of 4, so we can be sure that n is even. But this means that 3n + 1 must be odd. Because 3 n + 1 is a square, it follows that 3 n + 1 Modulo 8 equals 1. So, Modulo 8 we have:
2 n + 1 = 1
3 n + 1 = 1
Subtracting gives (Modulo 8):
n = 0
So, n is a multiple of 8.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.