Asked by POD
a planet orbits a star with period T. As seen from that planet the star's diameter subtends an angle of theta radians. Show the density of the star is given by rou=24pi/G(T^2)theta^3
please help!!!
please help!!!
Answers
Answered by
drwls
This calls for a combination of Kepler's third law (or Newton's gravitational and motion laws) and trigonometry.
Equating the gravitational attraction to the centripetal force tells you that
GM/R^2 = V^2/R = (2 pi R/T)^2/R
= 4 pi^2 R/T^2
Therefore
(4 pi^2/G M) = T^2/R^3
where R is the distance from the planet to the star. I will let r be the diameter of the star.
The angle subtended by the star in radians is theta = 2 r/R
Now, the star's density = M/[(4/3) pi r^3]
= M/[(4/3) pi R^3]*(r/R)^3
= 4 pi^2/(G T^2)(r/R)^3 / [(4/3) pi]
= 3 pi/(G T^2)/(theta/2)^3
= 24 pi/[G T^2 (theta)^3]
Equating the gravitational attraction to the centripetal force tells you that
GM/R^2 = V^2/R = (2 pi R/T)^2/R
= 4 pi^2 R/T^2
Therefore
(4 pi^2/G M) = T^2/R^3
where R is the distance from the planet to the star. I will let r be the diameter of the star.
The angle subtended by the star in radians is theta = 2 r/R
Now, the star's density = M/[(4/3) pi r^3]
= M/[(4/3) pi R^3]*(r/R)^3
= 4 pi^2/(G T^2)(r/R)^3 / [(4/3) pi]
= 3 pi/(G T^2)/(theta/2)^3
= 24 pi/[G T^2 (theta)^3]
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.