In general, you can model this wave as
y=Amplitude sin 2PI/lambda (x-vt)
or
y=amplitude sin 2PI(x/lambda - ft)
so
y=.1 sin 2PI(10x/15 -100t)
f=100
lambda=15/10=1.5 meters
speed=f*lambda
A plane progressive wave is represented by the
equation: y= 0.1sin(200pi(t)-20pi/15(x)) where
y is the displacement in metres, t is in
seconds and x is the distance from a fixed
origin O in metres. Find (i) the frequency of
the wave, (ii) its wavelength (iii) its speed
2 answers
Comparing the eqn with y=asin2pi(ft)-2piX/L. 2piFt=200pit, makin F the subject gives 200pit/2pit which gives F=100HZ. In finding lamda L, 2pix/L=20pix/15, cross multiply n make L the subject. L= 1.5 speed(v)=L*F, 1.5*100=150m/s