Asked by Anonymous

A pendulum of mass m= 0.8 kg and length l=1 m is hanging from the ceiling. The massless string of the pendulum is attached at point P. The bob of the pendulum is a uniform shell (very thin hollow sphere) of radius r=0.4 m, and the length l of the pendulum is measured from the center of the bob. A spring with spring constant k= 7 N/m is attached to the bob (center). The spring is relaxed when the bob is at its lowest point (θ=0). In this problem, we can use the small-angle approximation sinθ≃θ and cosθ≃1. Note that the direction of the spring force on the pendulum is horizontal to a very good approximation for small angles θ. (See figure)

Take g= 10 m/s2

(a) Calculate the magnitude of the net torque on the pendulum with respect to the point P when θ=5∘. (magnitude; in Nm)

|τP|=


(b) What is the magnitude of the angular acceleration α=θ¨ of the pendulum when θ=5∘? (magnitude; in radians/s2)

|α|=


(c) What is the period of oscillation T of the pendulum? (in seconds)

T=

Answers

Answered by Damon
hmm the usual assumption for small angle of pendulum A is cos A = 1 - A^2/2
Answered by Oliver
This is a person cheating on the edX 801x final exam.
Answered by Anonymous
but by being here so are you oliver
Answered by Greco
|ôP|= 1.308
|á|= 1.478
T= 1.526
Answered by tetee
could you do it for m 1 kg, lenght 1 m, r=0.4, k=10? thanks
Answered by Greco
|ôP|= 1.745
|á|= 1.577
T= 1.477
Answered by Anonymous
anybody got the same as tetee but with a k=15?
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions