A parasail is 120 of a kilometer above the water. Then, after 10 minutes, the parasail is 150 of a kilometer above the water. What is the difference in height?(1 point)

Responses

7100 kilometers
Start Fraction 7 over 100 End Fraction kilometers

3100 kilometers
Start Fraction 3 over 100 End Fraction kilometers

150 kilometers
Start Fraction 1 over 50 End Fraction kilometers

120 kilometers

1 answer

To find the difference in height of the parasail, we start by identifying the heights at the two different times:

  • Initial height: \( \frac{1}{20} \) kilometers
  • Final height: \( \frac{3}{20} \) kilometers

Next, we calculate the difference in height:

\[ \text{Difference in height} = \text{Final height} - \text{Initial height} = \frac{3}{20} - \frac{1}{20} \]

\[ = \frac{3 - 1}{20} = \frac{2}{20} = \frac{1}{10} \text{ kilometers} \]

Now, let's check the provided options:

  1. 7100 kilometers
  2. Start Fraction 7 over 100 End Fraction kilometers \( = \frac{7}{100} = 0.07 \) kilometers
  3. 3100 kilometers
  4. Start Fraction 3 over 100 End Fraction kilometers \( = \frac{3}{100} = 0.03 \) kilometers
  5. 150 kilometers
  6. Start Fraction 1 over 50 End Fraction kilometers \( = \frac{1}{50} = 0.02 \) kilometers
  7. 120 kilometers

None of the options correctly state the difference of \( \frac{1}{10} \) kilometers, which is equivalent to \( \frac{10}{100} = 0.1 \) kilometers.

The correct simplification of the height difference in terms of fractions is \( \frac{1}{10} \) kilometers, which is not listed among the provided choices.