Asked by Sarita
A) How do you prove that if 0(<or=)x(<or=)10, then 0(<or=)sqrt(x+1)(<or=)10?
B) So once that is found, then how can you prove that if 0(<or=)u(<or=)v(<or=)10, then 0(<or=)sqrt(u+1)(<or=)sqrt(v+1)(<or=)10?
B) So once that is found, then how can you prove that if 0(<or=)u(<or=)v(<or=)10, then 0(<or=)sqrt(u+1)(<or=)sqrt(v+1)(<or=)10?
Answers
Answered by
Damon
How do you prove that if 0(<or=)x(<or=)10, then 0(<or=)sqrt(x+1)(<or=)10?
===========================
does the square root increase (is the derivative positive) as x goes from 0 to 10 ?
If so the left side of the domain is minimum and the right side is maximum of the function and we only need to test the ends.
d (x+1)^.5 / dx = .5 /sqrt(x+1)
that is positive everywhere in the domain so all we have to prove is the end points.
0 </= x </= 10
if x = 0
sqrt x+1 = sqrt 1 = 1
if x = 10
sqrt x+1 = sqrt 11 = 3.32
so
1 </ sqrt(x+1) </= 3.32
===========================
does the square root increase (is the derivative positive) as x goes from 0 to 10 ?
If so the left side of the domain is minimum and the right side is maximum of the function and we only need to test the ends.
d (x+1)^.5 / dx = .5 /sqrt(x+1)
that is positive everywhere in the domain so all we have to prove is the end points.
0 </= x </= 10
if x = 0
sqrt x+1 = sqrt 1 = 1
if x = 10
sqrt x+1 = sqrt 11 = 3.32
so
1 </ sqrt(x+1) </= 3.32
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.