To find the equation of the trend line, we can use the slope-intercept form of a linear equation, which is given by:
\[ y = mx + b \]
where:
- \( m \) is the slope,
- \( b \) is the y-intercept.
We know the slope \( m \) is 3. Now, we need to find the y-intercept \( b \). We can use one of the points on the line to find it. Let's use the point (24, 127).
Substituting the values into the equation:
\[ 127 = 3(24) + b \]
Calculating \( 3(24) \):
\[ 127 = 72 + b \]
Now, solve for \( b \):
\[ b = 127 - 72 = 55 \]
Now we can write the equation of the trend line:
\[ y = 3x + 55 \]
Thus, the correct answer is:
y = 3x + 55.