Asked by Helga
A container in the form of a right circular cone of height 16 cm and base radius 4 cm is held vertex downward and filled with liquid. If the liquid leaks out from the vertex at a rate of 4 cm^3/s, find the rate of change of the depth of the liquid in the cone when half of the liquid has leaked out.
Answers
Answered by
Steve
When the water is x cm deep, and the surface is a circle of radius r
r/x = 4/16
r = x/4
v = pi/3 r^2 x = pi/3 x^2/16 x = pi/48 x^3
Now, what is x when half the liquid is gone?
pi/3 r^2 x = pi/3 * 16 * 16 / 2
x^3/4 = 128
x^3 = 2^11 = 2^9 * 4
x = 8 cbrt(4)
dv/dt = pi/16 x^2 dx/dt
4 = pi/16 * 64 cbrt(16) dx/dt
dx/dt = 64/pi / (128cbrt(2)) = .126 cm/s
Better check the details...
r/x = 4/16
r = x/4
v = pi/3 r^2 x = pi/3 x^2/16 x = pi/48 x^3
Now, what is x when half the liquid is gone?
pi/3 r^2 x = pi/3 * 16 * 16 / 2
x^3/4 = 128
x^3 = 2^11 = 2^9 * 4
x = 8 cbrt(4)
dv/dt = pi/16 x^2 dx/dt
4 = pi/16 * 64 cbrt(16) dx/dt
dx/dt = 64/pi / (128cbrt(2)) = .126 cm/s
Better check the details...
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.