Asked by TJR
A car whose speed is 90.0 km/h (25 m/s) rounds a curve 180 m in radius that is properly banked for speed of 45 km/h (12.5 m/s). Find the minimum coefficient of friction between tires and road that will permit the car to make a turn. What will happen to the car in this case?
My teacher said we'll use 'tan' but i'm confused. :(
My teacher said we'll use 'tan' but i'm confused. :(
Answers
Answered by
Elena
The projections of the forces acting ob the car moving at the velocity v=12.5 m/s are:
x: ma=N•sin α,
y: 0=N•cos α – mg.
The normal force has a horizontal component , pointing toward the center of the curve. Because the ramp is to be designed so that the force of static friction is zero, only the component causes the centripetal acceleration:
m•v²/R=N•sin α= m•g•sin α/cos α =m•g•tan α,
tan α= v²/g•R
α =arctan(v²/g•R)= arctan(12.5²/9.8•180) =5.06º
The equations of the motion of the car moving with velocity V=25 m/s are:
x: ma= N•sin α +F(fr) •cos α,
y: 0=N•cos α – mg- F(fr) •sin α.
Since F(fr) =μ•N, we obtain
ma= N•sin α + μ•N •cos α,
mg =N•cos α – μ•N •sin α.
ma/mg =N(sin α + μ •cos α)/N (cos α – μ •sin α)
a=g(sin α + μ •cos α)/ (cos α – μ •sin α)
But
a=V²/R,
therefore,
V²/R =g(sin α + μ •cos α)/ (cos α – μ •sin α),
V²•cos α -R•g•sin α =μ• (V²• sin α +R•g• cos α),
μ=( V²•cos α -R•g•sin α)/ (V²• sin α +R•g• cos α)=
=(625•0.996-180•9.8•0.088/(625•0.088+180•9.8•0.996)=
= 0.258
x: ma=N•sin α,
y: 0=N•cos α – mg.
The normal force has a horizontal component , pointing toward the center of the curve. Because the ramp is to be designed so that the force of static friction is zero, only the component causes the centripetal acceleration:
m•v²/R=N•sin α= m•g•sin α/cos α =m•g•tan α,
tan α= v²/g•R
α =arctan(v²/g•R)= arctan(12.5²/9.8•180) =5.06º
The equations of the motion of the car moving with velocity V=25 m/s are:
x: ma= N•sin α +F(fr) •cos α,
y: 0=N•cos α – mg- F(fr) •sin α.
Since F(fr) =μ•N, we obtain
ma= N•sin α + μ•N •cos α,
mg =N•cos α – μ•N •sin α.
ma/mg =N(sin α + μ •cos α)/N (cos α – μ •sin α)
a=g(sin α + μ •cos α)/ (cos α – μ •sin α)
But
a=V²/R,
therefore,
V²/R =g(sin α + μ •cos α)/ (cos α – μ •sin α),
V²•cos α -R•g•sin α =μ• (V²• sin α +R•g• cos α),
μ=( V²•cos α -R•g•sin α)/ (V²• sin α +R•g• cos α)=
=(625•0.996-180•9.8•0.088/(625•0.088+180•9.8•0.996)=
= 0.258
Answered by
bobpursley
Thanks, Elena, good work. My analysis was too quick.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.