Asked by Jerry
A baseball, hit 3 feet above the ground, leaves the bat at an angle of 45' and is caught by an outfielder 3 feet above the ground and 300 feet from home plate. What is the intitial speed of the ball, and how high does it rise?
So far i have got a few formulas, but i am still at a loss at where to start and when i start to put my formulas together i start to get zeros because everything is canceling out.
Y= h + (V[sub]0[/sub]Sin(x))t - (1/2)gt^2)
T= (V[sub]0[/sub]Sin(x))/g
X=V[sub]0[/sub]Cos(x)
Y=V[sub]0[/sub]Sin(x)
Tan(x)=(Sin(x))/(Cos(x))
Then i have the formula for posistion vector, velocity vector, and acceleration vector.
Where; I, J and K are the vectors
r(t)=(V[sub]0[/sub]Cos(x))tI + (h + (V[sub]0[/sub]Sin(x))t - (1/2)gt^2)
v(t)= (V[sub]0[/sub]Cos(x))I + ((V[sub]0[/sub]Sin(x)) - gtJ)
a(t)= -g J
Thanks for any help i receive!
So far i have got a few formulas, but i am still at a loss at where to start and when i start to put my formulas together i start to get zeros because everything is canceling out.
Y= h + (V[sub]0[/sub]Sin(x))t - (1/2)gt^2)
T= (V[sub]0[/sub]Sin(x))/g
X=V[sub]0[/sub]Cos(x)
Y=V[sub]0[/sub]Sin(x)
Tan(x)=(Sin(x))/(Cos(x))
Then i have the formula for posistion vector, velocity vector, and acceleration vector.
Where; I, J and K are the vectors
r(t)=(V[sub]0[/sub]Cos(x))tI + (h + (V[sub]0[/sub]Sin(x))t - (1/2)gt^2)
v(t)= (V[sub]0[/sub]Cos(x))I + ((V[sub]0[/sub]Sin(x)) - gtJ)
a(t)= -g J
Thanks for any help i receive!
Answers
Answered by
drwls
For a ball caught at the same altitude that it is hit, the horizontal distance travelled is
X = (Vo^2/g)sin(2A)
where A is the "launch" angle from horizontal.
In your case 2A = 45 degrees, so
Vo^2 = g X
Solve for Vo.
The height it rises is
H = (Vo sinA)^2/g = Vo^2/(2g) = X/2
X = (Vo^2/g)sin(2A)
where A is the "launch" angle from horizontal.
In your case 2A = 45 degrees, so
Vo^2 = g X
Solve for Vo.
The height it rises is
H = (Vo sinA)^2/g = Vo^2/(2g) = X/2
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.