Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
a +35x10^-6 C point charge is placed 32 cm from an identical +32x10^-6 C charge. how much work would be required to move a +50....Asked by leess
a +35x10^-6 C point charge is placed 32 cm from an identical +32x10^-6 C charge. how much work would be required to move a +50.0x10^-6 C test charge from a point midway between them to a point 12 cm closer to either of the charges?
please show work and explain. i still don't understand what Damon said. we didn't learn how to solve it with integrals. is there another way
physics - Damon, Friday, February 22, 2008 at 4:03pm
q is each of our two charges
Q is our test charge
Left charge at x = 0
Right charge at x = .32 m
force due to left charge = k q Q/x^2
force due to right charge = -k q Q/(.32-x)^2
when x = .16, the middle, the sum of those two forces is zero. However as you move off center, the one nearer will push back harder. We move to x = .16+.12 = .28. At that point we are .32 -.28 = .04 from the right charge.
The integral of dr/r^2 = -1/r =-[1/Rend -1/Rbegin] = [1/Rbegin - 1/Rend]
Let's assume we move right (+x direction)
Work done against left charge (negative because it is pushing in the direction of motion so we are holding back) = - k q Q( 1/.16 -1/.28)
Work done against right charge = +k q Q(1/.04 -1/.16)
please show work and explain. i still don't understand what Damon said. we didn't learn how to solve it with integrals. is there another way
physics - Damon, Friday, February 22, 2008 at 4:03pm
q is each of our two charges
Q is our test charge
Left charge at x = 0
Right charge at x = .32 m
force due to left charge = k q Q/x^2
force due to right charge = -k q Q/(.32-x)^2
when x = .16, the middle, the sum of those two forces is zero. However as you move off center, the one nearer will push back harder. We move to x = .16+.12 = .28. At that point we are .32 -.28 = .04 from the right charge.
The integral of dr/r^2 = -1/r =-[1/Rend -1/Rbegin] = [1/Rbegin - 1/Rend]
Let's assume we move right (+x direction)
Work done against left charge (negative because it is pushing in the direction of motion so we are holding back) = - k q Q( 1/.16 -1/.28)
Work done against right charge = +k q Q(1/.04 -1/.16)
Answers
Answered by
Damon
If you did not have the integrals to derive the equation, I bet you were given an equation like this:
Potential Energy of charge close to other charge = PE or U = k Q1 Q2 / R
That is all I did with the integrals.
That is where the 1/Rend and 1/Rbegin comes from.
The work done is just the change in potential energy.
Since I knew how to integrate, I did the force times distance, but I bet the result of my integral, the 1/R equation, is in your book.
Potential Energy of charge close to other charge = PE or U = k Q1 Q2 / R
That is all I did with the integrals.
That is where the 1/Rend and 1/Rbegin comes from.
The work done is just the change in potential energy.
Since I knew how to integrate, I did the force times distance, but I bet the result of my integral, the 1/R equation, is in your book.
Answered by
joe
1.3
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.