Asked by Sam
Find the sum of the three smallest positive values of theta such that 4 cos^2(2theta-pi) =3. (Give your answer in radians.)
Hi guys, I've been struggling with this problem. Here's my thinking about the problem:
we can rewrite the equation as cos^2(2theta-pi) = 3/4
Then we sqrt both sides --> cos(2theta - pi) = sqrt3 / 2
we find what arccos sqrt3 / 2 ---> pi/6 radians or 45 degrees (we'll use radians)
thus cos (2theta - pi) = cos(pi/6)
so 2 theta - pi = pi/6
and 2 theta = 7pi/6 ---> 7pi/12
When we let arccos sqrt3/2 ---> 11pi/6 and 13pi/6 we get 17pi/12 and 19pi/12 (those are the smallest two values which are positive, meaning 11pi/6 and 13pi/6)
so in all we get 17pi/12 + 19pi/12 + 7pi/12 = 43pi/12
Is this right?
Hi guys, I've been struggling with this problem. Here's my thinking about the problem:
we can rewrite the equation as cos^2(2theta-pi) = 3/4
Then we sqrt both sides --> cos(2theta - pi) = sqrt3 / 2
we find what arccos sqrt3 / 2 ---> pi/6 radians or 45 degrees (we'll use radians)
thus cos (2theta - pi) = cos(pi/6)
so 2 theta - pi = pi/6
and 2 theta = 7pi/6 ---> 7pi/12
When we let arccos sqrt3/2 ---> 11pi/6 and 13pi/6 we get 17pi/12 and 19pi/12 (those are the smallest two values which are positive, meaning 11pi/6 and 13pi/6)
so in all we get 17pi/12 + 19pi/12 + 7pi/12 = 43pi/12
Is this right?
Answers
Answered by
Steve
Hmmm.
4cos^2(2θ-pi) = 3
cos^2(2θ-pi) = 3/4
since cos(2θ-pi) - -cos2θ, this makes things simpler, so we have
cos^2 2θ = 3/4
cos2θ = ±√3/2
2θ = π/6,5π/6,7π/6,...
θ = π/12,5π/12,7π/12
Looks like the sum is 13π/12
4cos^2(2θ-pi) = 3
cos^2(2θ-pi) = 3/4
since cos(2θ-pi) - -cos2θ, this makes things simpler, so we have
cos^2 2θ = 3/4
cos2θ = ±√3/2
2θ = π/6,5π/6,7π/6,...
θ = π/12,5π/12,7π/12
Looks like the sum is 13π/12
Answered by
Sam
Oh thanks that helped a lot :)
Answered by
Anonymous
if sinA= 1/3, then find sin (A+pi/6), cos(A-pi/3), tan(A-pi4)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.