Asked by charlotte
A $5000 investment earns 7.2% annual interest, and an $8000 investment earns 5.4%, both compounded annually. How long will it take for the smaller investment to catch up to the larger one?
Answers
Answered by
MathMate
Use the compound interest formula:
A=P(1+i)^n
A=accumulated amount after n periods (years)
P=principal
i=interest per compounding period
n=number of compounding periods
If the smaller investment catches up to the larger one, then the accumulated amounts would be equal. Therefore by equating the two, we get an equation in which the only unknown is n, the number of periods (years in this case).
5000(1.072)^n=8000(1.054)^n
Solve for n:
(1.072/1.054)^n = 8000/5000
take logs and apply laws of logarithm,
n*log(1.072/1.054) = log(8000/5000)
n=log(8000/5000)/log(1.072/1.054)
I get approximately n=28.
Substitute in above solution to get the exact value.
A=P(1+i)^n
A=accumulated amount after n periods (years)
P=principal
i=interest per compounding period
n=number of compounding periods
If the smaller investment catches up to the larger one, then the accumulated amounts would be equal. Therefore by equating the two, we get an equation in which the only unknown is n, the number of periods (years in this case).
5000(1.072)^n=8000(1.054)^n
Solve for n:
(1.072/1.054)^n = 8000/5000
take logs and apply laws of logarithm,
n*log(1.072/1.054) = log(8000/5000)
n=log(8000/5000)/log(1.072/1.054)
I get approximately n=28.
Substitute in above solution to get the exact value.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.