Asked by Jayden Haddy
If the ratio of the roots of the quadratic equation ax^2 + bx +c =0 is m:n
prove that mnb^2=(m+n)^2 ac
prove that mnb^2=(m+n)^2 ac
Answers
Answered by
Sasuke
sum: m + n = -b/a
product: mn = c/a
substitute. when proving, you only manipulate/solve one side.
mnb^2=(m+n)^2 ac
(c/a)(b^2) =? (ac)(m+n)^2
(c/a)[a(m + n)]^2 =? (ac)(m+n)^2
(c/a)(a^2)(m+n)^2 =? (ac)(m+n)^2
(ac)(m+n)^2 = (ac)(m+n)^2
this problem is pretty much the same as the one you posted earlier. you should also check Naruto's answer on that post.
product: mn = c/a
substitute. when proving, you only manipulate/solve one side.
mnb^2=(m+n)^2 ac
(c/a)(b^2) =? (ac)(m+n)^2
(c/a)[a(m + n)]^2 =? (ac)(m+n)^2
(c/a)(a^2)(m+n)^2 =? (ac)(m+n)^2
(ac)(m+n)^2 = (ac)(m+n)^2
this problem is pretty much the same as the one you posted earlier. you should also check Naruto's answer on that post.
Answered by
Writeacher
Gee! Naruto and Sasuke seem to be the same person!!
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.