Asked by andy
Let V be the volume of the region bounded by x^2+y^2≥z^2, z≥0 and x^2+y^2+z^2≤1. What is the value of ⌊100V⌋?
Answers
Answered by
Steve
The region is inside a sphere, outside the cone. So, just find the volume of the cone with a spherical cap, and subtract that from half the sphere.
a web search will quickly provide the formulas needed.
Or, you can resort to a volume integral, most easily done using spherical coordinates.
a web search will quickly provide the formulas needed.
Or, you can resort to a volume integral, most easily done using spherical coordinates.
Answered by
andy
could you give me a bit help on how to proceed if I were to use a volume integral?
Answered by
Steve
the cone is φ = π/4
the sphere is r = 1
dV = r^2 sinφ dφ dθ dr
V = ∫[0,1]∫[0,2π]∫[0,π/4] r^2 sinφ dφ dθ dr
Good luck. Probably ought to verify with cone/sphere formulas to be sure.
the sphere is r = 1
dV = r^2 sinφ dφ dθ dr
V = ∫[0,1]∫[0,2π]∫[0,π/4] r^2 sinφ dφ dθ dr
Good luck. Probably ought to verify with cone/sphere formulas to be sure.
Answered by
andy
ok, thanks
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.