Asked by Isaac
The question is find the area of the reagion that is bounded by the curve y=arctan x, x=0, x=1, and the x-axis.
So I've drawn the enclosed region. To find the area would I use the Disc/shell method? If so the formula that I came up with looks like this:
If area = pi(r)^2 then it should be this...
= integral from 0 to 1 pi(arctan x)^2dx
is this correct? I took pi out to the front and then left arctanx^2.. what's the antiderivative of that? Im confused
So I've drawn the enclosed region. To find the area would I use the Disc/shell method? If so the formula that I came up with looks like this:
If area = pi(r)^2 then it should be this...
= integral from 0 to 1 pi(arctan x)^2dx
is this correct? I took pi out to the front and then left arctanx^2.. what's the antiderivative of that? Im confused
Answers
Answered by
Steve
If you want area, discs and shells don't even come into play. You only use those if you want to revolve an area around an axis.
In this case, it's a straightforward integral:
a = ∫[0,1] arctan(x) dx
= x arctan(x) - 1/2 ln(x^2+1) [0,1]
= 1/4 (π - ln(4))
In this case, it's a straightforward integral:
a = ∫[0,1] arctan(x) dx
= x arctan(x) - 1/2 ln(x^2+1) [0,1]
= 1/4 (π - ln(4))
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.