Asked by raja harishchandra
What is the sum of all possible real values of x, such that there exists a real value y which satisfies the equation (x+y−40)^2+(x−y−18)^2=0?
Answers
Answered by
Steve
since all squares are >= 0, both squared expressions must be zero. So you need
x+y-40 = 0 and
x-y-18 = 0
2x-58 = 0
x = 29
y = 11
Only one real value for x satisfies the equation
x+y-40 = 0 and
x-y-18 = 0
2x-58 = 0
x = 29
y = 11
Only one real value for x satisfies the equation
There are no AI answers yet. The ability to request AI answers is coming soon!