Asked by Nora 4
Three coins are tossed, and the number of heads observed is recorded. (Give your answers as fractions.)
(a) Find the probability for 0 heads.
Incorrect: Your answer is incorrect. . Your answer cannot be understood or graded. More Information Redone 0/3 was my answer
(b) Find the probability for 1 head.
Incorrect: Your answer is incorrect. . 1/3 because tossed three coins and one head
(c) Find the probability for 2 heads.
Incorrect: Your answer is incorrect. . 2/3 because tossed three coins and 2 heads
(d) Find the probability for 3 heads.
3/3 or 1 because of three coins and tossed three times...
(a) Find the probability for 0 heads.
Incorrect: Your answer is incorrect. . Your answer cannot be understood or graded. More Information Redone 0/3 was my answer
(b) Find the probability for 1 head.
Incorrect: Your answer is incorrect. . 1/3 because tossed three coins and one head
(c) Find the probability for 2 heads.
Incorrect: Your answer is incorrect. . 2/3 because tossed three coins and 2 heads
(d) Find the probability for 3 heads.
3/3 or 1 because of three coins and tossed three times...
Answers
Answered by
Steve
On each toss, there is a 1/2 probability of a head.
(a) and (d) are the same, because p(H) = p(T) = 1/2 so 3 heads is the same as 3 tails (0 heads)
The events are independent, so P(HHH) = P(H)*P(H)*P(H) = 1/2 * 1/2 * 1/2 = 1/8
(a) and (d) are both 1/8
(b) and (c) are the same, since P(1 head) = P(1 tail) = P(2 heads)
P(1 head) = P(HTT)+P(THT)+P(TTH) = 1/8 + 1/8 + 1/8 = 3/8
or,
P(1 head) = 1 - P(all heads) - P(all tails) - P(2 heads)
But P(2 heads) = P(1 head), so
P(1 head) = (1-P(HHH)-P(TTT))/2 = (1 - 2/8)/2 = 3/8
Each specific ordering of throws has a 1/8 chance of coming up, since there are 8 possible outcomes.
If you lst the possible outcomes, you will see that 1 has all heads, 1 has all tails, and 3 have 2 of one and 1 of the other.
You should never have guessed 0/3 on (a) since there is obviously a chance for a head on every throw.
(a) and (d) are the same, because p(H) = p(T) = 1/2 so 3 heads is the same as 3 tails (0 heads)
The events are independent, so P(HHH) = P(H)*P(H)*P(H) = 1/2 * 1/2 * 1/2 = 1/8
(a) and (d) are both 1/8
(b) and (c) are the same, since P(1 head) = P(1 tail) = P(2 heads)
P(1 head) = P(HTT)+P(THT)+P(TTH) = 1/8 + 1/8 + 1/8 = 3/8
or,
P(1 head) = 1 - P(all heads) - P(all tails) - P(2 heads)
But P(2 heads) = P(1 head), so
P(1 head) = (1-P(HHH)-P(TTT))/2 = (1 - 2/8)/2 = 3/8
Each specific ordering of throws has a 1/8 chance of coming up, since there are 8 possible outcomes.
If you lst the possible outcomes, you will see that 1 has all heads, 1 has all tails, and 3 have 2 of one and 1 of the other.
You should never have guessed 0/3 on (a) since there is obviously a chance for a head on every throw.
Answered by
Nora 57
I see what you are saying now, I even tossed a coin trying to figure this out. Thank you, some of these really get to me but I get some of them right off.
Answered by
Steve
Tossing a coin was a good idea, but you can't control what happens. Better would have been to take three coins and line them up, then ask
what are all the possible outcomes of 3 coins in a row? and start flipping them around.
what are all the possible outcomes of 3 coins in a row? and start flipping them around.
Answered by
spence
0/3
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.