Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
A and B are real numbers such that the two quadratic equations 13x^2 + 3x +2 = 0 and Ax^2 + Bx + 5 = 0 have a common root. What...Asked by Tony
A and B are real numbers such that the two quadratic equations 19x^2+3x+2=0 and Ax^2+Bx+7=0 have a common root. What is the value of A+B
Answers
Answered by
Steve
19x^2+3x+2=0 has roots
(-3±√143 i)/38
since both roots are complex, if the two quadratics share one root, they share both. So,
Ax^2+BX+7 must be a multiple of 19x^2+3x+2.
So, it must be 7/2 times, making it
19(7/2)x^2 + 3(7/2)x + 2(7/2)
= 66.5x^2 + 10.5x + 7
A+B = 77
(-3±√143 i)/38
since both roots are complex, if the two quadratics share one root, they share both. So,
Ax^2+BX+7 must be a multiple of 19x^2+3x+2.
So, it must be 7/2 times, making it
19(7/2)x^2 + 3(7/2)x + 2(7/2)
= 66.5x^2 + 10.5x + 7
A+B = 77
Answered by
Tony
thank you very much
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.