A and B are real numbers such that the two quadratic equations 19x^2+3x+2=0 and Ax^2+Bx+7=0 have a common root. What is the value of A+B

2 answers

19x^2+3x+2=0 has roots
(-3±√143 i)/38

since both roots are complex, if the two quadratics share one root, they share both. So,

Ax^2+BX+7 must be a multiple of 19x^2+3x+2.

So, it must be 7/2 times, making it

19(7/2)x^2 + 3(7/2)x + 2(7/2)
= 66.5x^2 + 10.5x + 7

A+B = 77
thank you very much