Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Use the Riemann Sums corresponding to 5 inscribed rectangles of equal width to approximate the integral a= 1, b= 3, (1/x)dx thi...Asked by Eric
                Use the Riemann Sums corresponding to 5 inscribed rectangles of equal width to approximate the integral a= 1, b= 3, (1/x)dx 
this is all for definite integral
i just know x1=1.4, x2=1.8, x3=2.2, x4=2.6, x5=3.0
how do i continue
            
        this is all for definite integral
i just know x1=1.4, x2=1.8, x3=2.2, x4=2.6, x5=3.0
how do i continue
Answers
                    Answered by
            Steve
            
    you're halfway there. We approximate the integral by adding up the areas of the rectangles. Since the width of each rectangle is 0.4, all we have to do is evaluate f(x) at some point in each interval and multiply.
Usually the left side, middle, or right side of the rectangle is chosen, but as the actual value of the integral is the limit as the width decreases to zero, it doesn't really matter where in the interval f(x) is evaluated.
Since you have specified inscribed rectangles, and since 1/x is concave upward for x>0, we will want the right end of each interval. (If that's not clear, sketch the curve and see where the rectangles intersect the curve.)
So, just add up
0.4 (f(1.4)+f(1.8)+...+f(3))
0.4 (.714+.556+.455+.385+.333)
0.4 * 2.442
= 0.977
Since our rectangles are all under the curve, our estimate will be low.
Actual value: 1.0986
    
Usually the left side, middle, or right side of the rectangle is chosen, but as the actual value of the integral is the limit as the width decreases to zero, it doesn't really matter where in the interval f(x) is evaluated.
Since you have specified inscribed rectangles, and since 1/x is concave upward for x>0, we will want the right end of each interval. (If that's not clear, sketch the curve and see where the rectangles intersect the curve.)
So, just add up
0.4 (f(1.4)+f(1.8)+...+f(3))
0.4 (.714+.556+.455+.385+.333)
0.4 * 2.442
= 0.977
Since our rectangles are all under the curve, our estimate will be low.
Actual value: 1.0986
                    Answered by
            Eric
            
    wow I didn't think it was so simple. thank you !
    
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.