Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Let f(x) be a polynomial such that f(f(x))−x^2 =xf(x). Find f(-100)Asked by Anubhav
Let f(x) be a polynomial such that
f(f(x))−x^2=xf(x).
Find f(−100).
f(f(x))−x^2=xf(x).
Find f(−100).
Answers
Answered by
Steve
It is clear that f(x) is linear. If it were, say, quadratic,
f(x) = ax^2+bx+c with a≠0
f(f) = af^2+bf+c
= a(ax^2+bx+c)^2 + b(ax^2+bx+c) + c
is a 4th-degree polynomial.
xf(x)+x^2 = x(ax^2+bx+c) + x^2
is a 3rd-degree polynomial. That would mean a=0.
So, let
f(x) = ax+b
f(f) = af+b = a(ax+b)+b = a^2x+(ab+b)
xf(x)+x^2 = x(ax+b)+x^2 = (a+1)x^2 + bx
So, a+1=0, and a = -1
That makes b=1, and so
f(x) = 1-x
check:
f(f(x)) = 1-f = 1-(1-x) = x
xf(x)+x^2 = x(1-x)+x^2 = x
f(x) = ax^2+bx+c with a≠0
f(f) = af^2+bf+c
= a(ax^2+bx+c)^2 + b(ax^2+bx+c) + c
is a 4th-degree polynomial.
xf(x)+x^2 = x(ax^2+bx+c) + x^2
is a 3rd-degree polynomial. That would mean a=0.
So, let
f(x) = ax+b
f(f) = af+b = a(ax+b)+b = a^2x+(ab+b)
xf(x)+x^2 = x(ax+b)+x^2 = (a+1)x^2 + bx
So, a+1=0, and a = -1
That makes b=1, and so
f(x) = 1-x
check:
f(f(x)) = 1-f = 1-(1-x) = x
xf(x)+x^2 = x(1-x)+x^2 = x
Answered by
intermediate player PLEASE HELP
101
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.