Question

Let AB be the diameter of circle Γ1. In the interior of Γ1, there are circles Γ2 and Γ3 that are tangent to Γ1 at A and B, respectively. Γ2 and Γ3 are also externally tangent at C. This exterior tangent cuts Γ1 at P and Q, with PQ=20. The area that is within Γ1 but not in Γ2 or Γ3 is equal to Mπ. Determine M.

Answers

Anonymous
10
a
wrong
dr. cao
should be 26
hans
WRONG!!!
dr.cao 2nd
wrong dr.cao.....
dr.cao 3rd
wrong de.cao
dr.cao 3rd
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
dr.cao 2nd
calm down dr.cao 3rd
calm down
Mathslover Please help
Dude don`t fight please tell the answer
Athul
50
Let the radius of larger circle be a, smaller ones be 'b' and 'c'.
Ans = pie(a^2-(b^2+c^2)) here we are only concerned with (a^2-(b^2+c^2))=
(a^2 - ((b + c)^2 - 2bc) = 2bc as a=b+c
Using intersecting chord theorem,
2bc= AC*BC/4= PC*CQ/4= 10*10/4 as diameter bisects chord
= 50 Ans
Athul
SORRY GUYS I MEANT TO SAY ITS 60 SORRY DON'T USE 50 ITS 60!!

Related Questions