Asked by Wiz

If the derivative can be thought of as a marginal revenue function for x units (in hundreds of items) sold, and the revenue for a company is given by the function.
R(x) = 30x^3 - 120x^2 + 500 for 0 _< x _< 100,

a. Sketch the graphs of the functions R(x) and R'(x) .

b. Find the number of units sold at which the marginal revenue begins to increase.

Answers

Answered by Wiz
If the derivative can be thought of as a marginal revenue function for x units (in hundreds of items) sold, and the revenue for a company is given by the function.
R(x) = 30x^3 - 120x^2 + 500 for 0 _< x _< 100,

a. Sketch the graphs of the functions R(x) and R'(x) .

b. Find the number of units sold at which the marginal revenue begins to increase
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions