Asked by Saksham
Let V be the volume of the 3-dimensional structure bounded by the paraboloid z=1−x^2−y^2, planes x=0, y=0 and z=0 and by the cylinder x^2+y^2−x=0. If V=aπ/b, where a and b are coprime positive integers, what is the value of a+b?
Answers
Answered by
Steve
The cylinder is centered at (1/2,0) and has radius 1/2
Seems the best way to handle this one is with cylindrical coordinates (like polar coordinates, plus a z-axis):
As with polar coordinates, the alement of area is
dA = r dr dθ
so, the volume element is
dV = r dr dθ dz
We have z = 1-(x^2+y^2) = 1-r^2
x^2+y^2-x = 0 becomes
r^2 - rcosθ = 0, or
r = 1-cosθ
So,
V = ∫[0,pi/2] ∫[0,cosθ] z r dr dθ
= ∫[0,pi/2] ∫[0,cosθ] r(1-r^2) dr dθ
= ∫[0,pi/2] (1/2 cos^2(θ) - 1/3 cos^3(θ)) dθ
= 1/72 (18θ - 18sinθ + 9sin2θ - 2sin3θ) [0,pi/2]
= pi/8 - 2/9
Hmm. I don't get a*pi/b
Must have messed up. Check it out.
Seems the best way to handle this one is with cylindrical coordinates (like polar coordinates, plus a z-axis):
As with polar coordinates, the alement of area is
dA = r dr dθ
so, the volume element is
dV = r dr dθ dz
We have z = 1-(x^2+y^2) = 1-r^2
x^2+y^2-x = 0 becomes
r^2 - rcosθ = 0, or
r = 1-cosθ
So,
V = ∫[0,pi/2] ∫[0,cosθ] z r dr dθ
= ∫[0,pi/2] ∫[0,cosθ] r(1-r^2) dr dθ
= ∫[0,pi/2] (1/2 cos^2(θ) - 1/3 cos^3(θ)) dθ
= 1/72 (18θ - 18sinθ + 9sin2θ - 2sin3θ) [0,pi/2]
= pi/8 - 2/9
Hmm. I don't get a*pi/b
Must have messed up. Check it out.
Answered by
joshua
12
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.