Asked by P
Two conducting thin hollow cylinders are co-aligned. The inner cylinder has a radius R1 , the outer has a radius R2 . Calculate the electric potential difference V(R2)-V(R1) between the two cylinders. The inner cylinder has a surface charge density of σa=-σ , where σ>0 , and the outer surface has a surface charge density of σb=3σ ,
The cylinders are much much longer than R1 . Thus, you may ignore end effects and neglect the thickness of the cylinders.
a. What is the electric potential difference between the outer cylinder and the inner cylinder V(R2)-V(R1) ? Express your answer in terms of R1 , R2 ,σ , and epsilon_0 .
unanswered
b. What is the magnitude of the electric field outside the cylinders, r>R2 ?
Express your answer in terms of r , ,R1,R2 ,σ and epsilon_0.
unanswered
c. What is the electric potential difference between a point at a distance r=2R2 from the symmetry axis and the outer cylinder V(2R2)-V(R2)?
Express your answer in terms of R1 ,R2 ,σ and epsilon_0 .
The cylinders are much much longer than R1 . Thus, you may ignore end effects and neglect the thickness of the cylinders.
a. What is the electric potential difference between the outer cylinder and the inner cylinder V(R2)-V(R1) ? Express your answer in terms of R1 , R2 ,σ , and epsilon_0 .
unanswered
b. What is the magnitude of the electric field outside the cylinders, r>R2 ?
Express your answer in terms of r , ,R1,R2 ,σ and epsilon_0.
unanswered
c. What is the electric potential difference between a point at a distance r=2R2 from the symmetry axis and the outer cylinder V(2R2)-V(R2)?
Express your answer in terms of R1 ,R2 ,σ and epsilon_0 .
Answers
Answered by
Anonymous
Please some one answer.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.