Asked by can u please help me! please
How many ordered pairs of integers (a,b) are there such that 1/a+1/b=1/200?
Answers
Answered by
Reiny
multiply both sides by 200ab
200b+200a = ab
200b - ab = -200a
b(200-a) = -200a
b = -200a/(200-a) = 200a/(a-200)
or
a = 200b/(b-200)
let a = 201, then b = 40200
let a = 199 , then b = -39800
let a = 202 , then b = 20200
let a = 198 , then b = -19800
let a = 203 , then b = not an integer !
let a = 197 , then b = not an integer!
let a = 204 , then b = 10200
let a = 205 , then b = 8200
let a = 206 , then b = not an integer, ahhh!
...
let a = 240, then b = 1200
let a = 600 , then b = 240000
let a = 10200 , then b = 204
we have to have (a-200) be divisible into 200a
obviously we cannot use a = 200, but we can go up or down from 200 leaving divisors of ±1 , ±2, ±4, ±5, ±8, ±10, .. as long as that divisor divides evenly into 200a
that is, 200 = 2x2x2x5x5
Wolfram says that there are 69 of these
http://www.wolframalpha.com/input/?i=%28x%2By%29%2F%28xy%29+%3D+1%2F200
200b+200a = ab
200b - ab = -200a
b(200-a) = -200a
b = -200a/(200-a) = 200a/(a-200)
or
a = 200b/(b-200)
let a = 201, then b = 40200
let a = 199 , then b = -39800
let a = 202 , then b = 20200
let a = 198 , then b = -19800
let a = 203 , then b = not an integer !
let a = 197 , then b = not an integer!
let a = 204 , then b = 10200
let a = 205 , then b = 8200
let a = 206 , then b = not an integer, ahhh!
...
let a = 240, then b = 1200
let a = 600 , then b = 240000
let a = 10200 , then b = 204
we have to have (a-200) be divisible into 200a
obviously we cannot use a = 200, but we can go up or down from 200 leaving divisors of ±1 , ±2, ±4, ±5, ±8, ±10, .. as long as that divisor divides evenly into 200a
that is, 200 = 2x2x2x5x5
Wolfram says that there are 69 of these
http://www.wolframalpha.com/input/?i=%28x%2By%29%2F%28xy%29+%3D+1%2F200
Answered by
Calvin Lin
This problem has been posted on Brilliant as a current problem in this weeks' Geometry problem set.
I am unable to post an image or internet link to it.
Please refrain from telling the OP the answer.
I ask that moderators take this posting down.
- Calvin Lin
Brilliant Challenge Master
I am unable to post an image or internet link to it.
Please refrain from telling the OP the answer.
I ask that moderators take this posting down.
- Calvin Lin
Brilliant Challenge Master
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.