Asked by Julie
The application of one function followed by the application of a second function to the result of the first as in F^-1(f(x)) is called composition of functions. The two functions need not be inverse of each other. In a diagram, the output of one function is f(x) is used as the input for a second function g(x). In this case, the composite is denoted g(f(x)) which is read "g composed with f of x" or "g of f of x."
**If you could help with anything I'd really appreciate it!! Thank you**
Suppose f and g are functions defined by the following table:
x) -3 -2 -1 0 1 2 3
f(x) 10 8 7 3 -4 -7 -8
g(x) 3 1 0 2 -3 -1 -2
i. Make a table of values for f(g(x)) with x= -3,-2,-1,0,1,2,3 Remember to always start with the innermost set of parentheses
ii. Make a table of values for g(g(x)) with x= -3,-2,-1,0,1,2,3.
iii. Explain why you cannot find the composite function g(f(x)).
a)Consider the two functions f(x)=-x^2+ 7 and g(x)=3x+4. Using input values of -1,2,0.5,and 8 for x:
1. Calculate f(g(x)) for each input value
2. Calculate g(f(x)) for each input value.
B) if f and g are two functions, what must be true about the domains and ranges of f and g in order for f(g(x)) to make sense? What must be true for g(f(x))to make sense?
**If you could help with anything I'd really appreciate it!! Thank you**
Suppose f and g are functions defined by the following table:
x) -3 -2 -1 0 1 2 3
f(x) 10 8 7 3 -4 -7 -8
g(x) 3 1 0 2 -3 -1 -2
i. Make a table of values for f(g(x)) with x= -3,-2,-1,0,1,2,3 Remember to always start with the innermost set of parentheses
ii. Make a table of values for g(g(x)) with x= -3,-2,-1,0,1,2,3.
iii. Explain why you cannot find the composite function g(f(x)).
a)Consider the two functions f(x)=-x^2+ 7 and g(x)=3x+4. Using input values of -1,2,0.5,and 8 for x:
1. Calculate f(g(x)) for each input value
2. Calculate g(f(x)) for each input value.
B) if f and g are two functions, what must be true about the domains and ranges of f and g in order for f(g(x)) to make sense? What must be true for g(f(x))to make sense?
Answers
Answered by
Katy
If (f º g)(3) = 7, then f(x) and g(x) could be:
Select one:
a. f(x) = 3x2 – 10x + 4, g(x) = x + 2
b. f(x) = 2x – 3, g(x) = x2 – 4
c. f(x) = 3x + 1, g(x) = x – 3
d. f(x) = x2, g(x) = x – 2
Select one:
a. f(x) = 3x2 – 10x + 4, g(x) = x + 2
b. f(x) = 2x – 3, g(x) = x2 – 4
c. f(x) = 3x + 1, g(x) = x – 3
d. f(x) = x2, g(x) = x – 2
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.