Asked by matt
does this series converge, and if so is it absolutely convergent?
the series from n=1 to infinity of
((-1)^*n+1))/n^4
I found that by the ratio test it was inconclusive, so no abs. conv
is this right? and how do i know if it is simply convergent?
the series from n=1 to infinity of
((-1)^*n+1))/n^4
I found that by the ratio test it was inconclusive, so no abs. conv
is this right? and how do i know if it is simply convergent?
Answers
Answered by
drwls
Is ((-1)^*n+1)) supposed to mean
[(-1)^(n+1)] ?
If so, an infinite series of positive 1/n^4 terms is convergent, based on the integral test. A similar series with alternating + or - terms of the same magnitude must therefore also converge.
[(-1)^(n+1)] ?
If so, an infinite series of positive 1/n^4 terms is convergent, based on the integral test. A similar series with alternating + or - terms of the same magnitude must therefore also converge.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.