Asked by Barb
Show that z/pq = 1/pr + 1/qr, where r = (p + q)/z
Finding decmpositions of a fraction into 2 units as indicated on a paprus written in Greek.
Finding decmpositions of a fraction into 2 units as indicated on a paprus written in Greek.
Answers
Answered by
Steve
rz/pqr = q/pqr + p/pqr
rz = q + p
r = (p+q)/z
rz = q + p
r = (p+q)/z
Answered by
Reiny
RS = 1/(pr) + 1/(qr) , if r = (p+q)/z
= 1/( p(p+q)/z) + 1/( q(p+q)/z)
= z/(p(p+q)) + z/(q(p+q))
= (zq + zp)/( pq(p+q))
= z(p+q)/(pq(p+q))
= z/(p+q)
= LS
This allows you to express any fraction , which has a factorable denominator , into two fraction each with a numerator of 1
e.g.
suppose we have 5/12
5/12 = 5/(3x4)
so using the above formula
z = 5
p = 3
q=4
then r = 7/5
so 5/12 = 1/(3(7/5)) + 1/4(7/5))
= 1/(21/5) + 1/(28/5)
= 5/21 + 5/28
= 5( 1/21 + 1/28)
= 1/( p(p+q)/z) + 1/( q(p+q)/z)
= z/(p(p+q)) + z/(q(p+q))
= (zq + zp)/( pq(p+q))
= z(p+q)/(pq(p+q))
= z/(p+q)
= LS
This allows you to express any fraction , which has a factorable denominator , into two fraction each with a numerator of 1
e.g.
suppose we have 5/12
5/12 = 5/(3x4)
so using the above formula
z = 5
p = 3
q=4
then r = 7/5
so 5/12 = 1/(3(7/5)) + 1/4(7/5))
= 1/(21/5) + 1/(28/5)
= 5/21 + 5/28
= 5( 1/21 + 1/28)
Answered by
Barb
Thank you so much!!
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.