Asked by Zisis
Suppose that function f:[0,2]->R is continuous at [0,2], differentiable at (0,2) and such that f(0)=0, f(1)=1 and f(2)=1.
a) Show that there is a x1 that belongs to (0,1) such that f'(x1)=1.
b) Show that there is a x2 that belongs to (1,2) such that f'(x2)=0.
c) Show that there is a x3 that belongs to (0,2) such that f'(x3)=2/3.
a) Show that there is a x1 that belongs to (0,1) such that f'(x1)=1.
b) Show that there is a x2 that belongs to (1,2) such that f'(x2)=0.
c) Show that there is a x3 that belongs to (0,2) such that f'(x3)=2/3.
Answers
Answered by
Steve
a) (f(1)-f(0))/(1-0) = 1
MVT says x1 exists
b) f(1)=f(2), so MVT or Rolle's Theorem says x2 exists
c) since differentiable, the IVT applies to the derivative, which must assume all values between 0 and 1 (which we know it attains from the two parts above).
MVT says x1 exists
b) f(1)=f(2), so MVT or Rolle's Theorem says x2 exists
c) since differentiable, the IVT applies to the derivative, which must assume all values between 0 and 1 (which we know it attains from the two parts above).
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.