Asked by Anamika
the equation of the perpendicular bisectors of sides AB and AC of a triangle ABC are x-y+5=0 and x+2y=0
respectively. if the point is A (1,-2), find the equation of line BC.
respectively. if the point is A (1,-2), find the equation of line BC.
Answers
Answered by
MathMate
Hint:
Find the intersection of the two perpendicular bisectors, which gives the circumcentre O.
The distance AO=r is the radius of the circumscribed circle.
The circle with radius r, and centred at O will intersect AB and AC at B and C respectively.
Find the intersection of the two perpendicular bisectors, which gives the circumcentre O.
The distance AO=r is the radius of the circumscribed circle.
The circle with radius r, and centred at O will intersect AB and AC at B and C respectively.
Answered by
Steve
side AB is a line ┴ to x-y+5=0, so it has slope -1. It is thus x+y+1=0
side AC is ┴ to x+2y=0, so it has slope 2. It is thus 2x-y-4=0
x-y+5=0 and x+y+1=0 intersect at P=(-3,2).
Since (-3,2)-A = (-4,4), B=P+(-4,4) = (-7,6)
x+2y=0 and 2x-y-4=0 intersect at Q=(8/5,-4/5).
Since Q-A=(3/5,6/5), C=Q+(3/5,6/5) = (11/5,2/5)
So, now you have B and C, and the line through those points is
y-6 = (-14/23)(x+7)
side AC is ┴ to x+2y=0, so it has slope 2. It is thus 2x-y-4=0
x-y+5=0 and x+y+1=0 intersect at P=(-3,2).
Since (-3,2)-A = (-4,4), B=P+(-4,4) = (-7,6)
x+2y=0 and 2x-y-4=0 intersect at Q=(8/5,-4/5).
Since Q-A=(3/5,6/5), C=Q+(3/5,6/5) = (11/5,2/5)
So, now you have B and C, and the line through those points is
y-6 = (-14/23)(x+7)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.