Asked by sunil
ABCD IS A PARALLELOGRAM, G IS THE POINT ON AB SUCH THAT AG = 2GB, E IS A POINT OF CD SUCH THAT CE = 2DE AND AND F IS A POINT OF BC SUCH THAT BF = 2FC. PROVE THAT
1) ar(EGB) = 1/6 ar(ABCD)
2)ar(EFC) = 1/2 ar(EBF)
3) ar(EBG) = ar(EFC)
4) FIND WHAT PORTION OF THE ARE OF PARALLELOGRAM IS THE AREA OF EFG.
1) ar(EGB) = 1/6 ar(ABCD)
2)ar(EFC) = 1/2 ar(EBF)
3) ar(EBG) = ar(EFC)
4) FIND WHAT PORTION OF THE ARE OF PARALLELOGRAM IS THE AREA OF EFG.
Answers
Answered by
Steve
1)
height h of ABCD and EGB is the same
base of EGB = 1/3 AB
area(ABCD) = h*AB
area(EGB) = 1/2 h*(1/3 AB) = 1/6 h*AB
2)
base of EFC = 1/2 base of EBF
so area is 1/2 as well
3)
if g = altitude from AD to BC
area(EFC) = 1/2 * (2/3 g) * (1/3 BC) = 1/9 area(ABCD)
So, I get area(EFC) = 2/3 area(EBG)
Is there a typo here?
4)
area(EFG) = area(EGB)+area(EBF)+area(EFC)
= 1/6(ABCD)+2area(EFC)+area(EFC)
= 1/6(ABCD) + 3(1/9 ABCD)
= 1/2(ABCD)
height h of ABCD and EGB is the same
base of EGB = 1/3 AB
area(ABCD) = h*AB
area(EGB) = 1/2 h*(1/3 AB) = 1/6 h*AB
2)
base of EFC = 1/2 base of EBF
so area is 1/2 as well
3)
if g = altitude from AD to BC
area(EFC) = 1/2 * (2/3 g) * (1/3 BC) = 1/9 area(ABCD)
So, I get area(EFC) = 2/3 area(EBG)
Is there a typo here?
4)
area(EFG) = area(EGB)+area(EBF)+area(EFC)
= 1/6(ABCD)+2area(EFC)+area(EFC)
= 1/6(ABCD) + 3(1/9 ABCD)
= 1/2(ABCD)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.