Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Let a,b,c be positive integers such that a divides b^2 , b divides c^2 and c divides a^2 . Prove that abc divides (a + b + c)7...Asked by Meenakshi
Let a,b,c be positive integers such that a divides b^2 , b divides c^2 and c divides a^2 . Prove that abc divides (a + b + c)^7 .
Answers
Answered by
Jennifer
(a+b+c)^7 = (a+b+c)*(a+b+c)*(a+b+c)*(a+b+c)*(a+b+c)*(a+b+c)*(a+b+c)
will be of the form
a^7 + c1*a^6*b + c2*a^6*c + c3*a^5*b^2 + c4*a^5*c^2 + c5*a^5*b*c + . . . .
where c1, c2, c3 are constants found when doing the actual expansion.
so all the terms in the expansion are of the form
ci*a^x*b^y*c^z
where x, y, z are integers from 0 to 7, and x+y+z = 7
So (ci*a^x*b^y*c^z)/abc = ci*a^(x-1)*b^(y-1)*c^(z-1)
So in the case when x, y, and z, are all 1 or greater, abc divides these terms in the expansion.
We are left with the terms when x, y, or z is 0
the terms involving
a^7, b^7, c^7, a^6*b, a^6*c, a*b^6, a*c^6, b^6*c, 6*c^6
a^7 / abc = a^6/bc; but c divides a^2; so we need to show that a^4/b is a real number; b divides c^2, so c^2 is a multiple of b; a^4/b if and only if a^4/c^2; c divides a^2; so c^2 divides a^4; a^7 divides abc
Use this type of logic for the rest of the terms b^7, . . .etc
will be of the form
a^7 + c1*a^6*b + c2*a^6*c + c3*a^5*b^2 + c4*a^5*c^2 + c5*a^5*b*c + . . . .
where c1, c2, c3 are constants found when doing the actual expansion.
so all the terms in the expansion are of the form
ci*a^x*b^y*c^z
where x, y, z are integers from 0 to 7, and x+y+z = 7
So (ci*a^x*b^y*c^z)/abc = ci*a^(x-1)*b^(y-1)*c^(z-1)
So in the case when x, y, and z, are all 1 or greater, abc divides these terms in the expansion.
We are left with the terms when x, y, or z is 0
the terms involving
a^7, b^7, c^7, a^6*b, a^6*c, a*b^6, a*c^6, b^6*c, 6*c^6
a^7 / abc = a^6/bc; but c divides a^2; so we need to show that a^4/b is a real number; b divides c^2, so c^2 is a multiple of b; a^4/b if and only if a^4/c^2; c divides a^2; so c^2 divides a^4; a^7 divides abc
Use this type of logic for the rest of the terms b^7, . . .etc
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.