Asked by tyler
consider a manufacture whose total cost of producing x items is given by c(x) = 10000 + 5x+1/9x^2
a) what is the average cost function of A(x) = c(x)/x?
b)how many items should the manufacturer produce in order to minimize average cost?
c)what is the smallest average cost?
d) find c(x)
e) when does c(x) have a critical point? what is the average cost when c(x) has a critical point?
a) what is the average cost function of A(x) = c(x)/x?
b)how many items should the manufacturer produce in order to minimize average cost?
c)what is the smallest average cost?
d) find c(x)
e) when does c(x) have a critical point? what is the average cost when c(x) has a critical point?
Answers
Answered by
Steve
a(x) = c(x)/x = 10000/x + 5 + 1/9 x
da/dx = -1000/x^2 + 1/9
da/dx=0 when x = 30√10 = 94.868
a(94) = 121.8
a(95) = 120.8
so, it looks like the lowest average cost is at x=95
c(x) is a parabola whose vertex is at a negative x-value. So, there is no minimum cost.
da/dx = -1000/x^2 + 1/9
da/dx=0 when x = 30√10 = 94.868
a(94) = 121.8
a(95) = 120.8
so, it looks like the lowest average cost is at x=95
c(x) is a parabola whose vertex is at a negative x-value. So, there is no minimum cost.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.