Asked by ziya
If Sn represents the sum of the squares of the first n natural numbers, use proof by induction to find which of the following expressions for Sn is true?
Sn=n(n-1)/(3)
Sn=n(2n-1)/(3)
Sn=n(n+1)/(3)
Sn=n(n+1)(2n+1)/(3)
Sn=n(n-1)/(3)
Sn=n(2n-1)/(3)
Sn=n(n+1)/(3)
Sn=n(n+1)(2n+1)/(3)
Answers
Answered by
Anonymous
since you are adding up n squares, the sum will be something on the order of n*n^2, or n^3. So, the first 3 choices can be eliminated right away.
Going with the last one, we see right off there's a typo.
S1 = 1 = 1(2)(3)/6
Now, assume that
1+4+9...+k^2 = k(k+1)(2k+1)/6
adding in (k+1)^2 to both sides, we get
1+4+9...+k^2+(k+1)^2 = k(k+1)(2k+1)/6 + (k+1)^2
= (2k^3+3k^2+k)/6 + (k^2+2k+1)
= (2k^3 + 3k^2 + k + 6k^2 + 12k + 6)/6
= (2k^3+6k^2+6k+2 + 3k^2+6k+3 + k+1)/6
= (2(k+1)^3 + 3(k+1)^2 + (k+1))/6
ta-da!
Going with the last one, we see right off there's a typo.
S1 = 1 = 1(2)(3)/6
Now, assume that
1+4+9...+k^2 = k(k+1)(2k+1)/6
adding in (k+1)^2 to both sides, we get
1+4+9...+k^2+(k+1)^2 = k(k+1)(2k+1)/6 + (k+1)^2
= (2k^3+3k^2+k)/6 + (k^2+2k+1)
= (2k^3 + 3k^2 + k + 6k^2 + 12k + 6)/6
= (2k^3+6k^2+6k+2 + 3k^2+6k+3 + k+1)/6
= (2(k+1)^3 + 3(k+1)^2 + (k+1))/6
ta-da!
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.