Asked by HanuMath25/11
A fractal is created: A circle is drawn with radius 8 cm. Another circle is drawn with half the radius of the previous circle. The new circle is tangent to the previous circle. Suppose this pattern continues through five steps. What is the sum of the areas of the circles? Express your answer as an exact fraction.
Answers
Answered by
Reiny
area = π(8)^2 + π(4)^2 + π(2)^2 + π(1)^2 + π(.5)^2
= 64π + 16π + 4π + π + (1/4)π
this is a GS where a = 64π and r = 1/4
but , rather than using the formula in this case it is just as easy to just add them up
total = 85.25π
check:
area = 64π( 1 - (1/4)^5)/(3/4) = 85.25π
= 64π + 16π + 4π + π + (1/4)π
this is a GS where a = 64π and r = 1/4
but , rather than using the formula in this case it is just as easy to just add them up
total = 85.25π
check:
area = 64π( 1 - (1/4)^5)/(3/4) = 85.25π
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.