Asked by bülent
A mass m1 = 7.65 kg, is at rest on a frictionless horizontal surface and connected to a wall by a spring with k = 67.9 N/m, as shown in the figure. A second mass, m2 = 5.29 kg, is moving to the right at v0 = 15.3 m/s. The two masses collide and stick together.
the figure is
htt p://s2.dosya.tc/server22/DIDqtx/P043figure.png. html
a) What is the maximum compression of the spring?
(in m) 2.731 m
b) How long will it take after the collision to reach this maximum compression?
(in s) 0.6857 s
i tried everything ,just found out the second one but still have a problem about the first one.
the figure is
htt p://s2.dosya.tc/server22/DIDqtx/P043figure.png. html
a) What is the maximum compression of the spring?
(in m) 2.731 m
b) How long will it take after the collision to reach this maximum compression?
(in s) 0.6857 s
i tried everything ,just found out the second one but still have a problem about the first one.
Answers
Answered by
Damon
First find the speed after collision from conservation of momentum
initial momentum:
m v = 5.29 * 15.3 = 80.9 which will be momentum after crash
after crash
m = 5.29+7.65 = 12.94 kg
so for v after crash:
12.94 v = 80.9
v = 6.25 m/s after crash
v at end is zero and energy after crash is conserved so
(1/2)(12.94)(6.25)^2 = (1/2) (67.9) x^2
x^2 = 7.45
and
x = 2.73 meters I agree
time = 1/4 of period T
T = 2 pi sqrt(m/k)
= 2 pi sqrt (12.94/67.9)
= 2.74 seconds
1/4 T = .6857 seconds sure enough
initial momentum:
m v = 5.29 * 15.3 = 80.9 which will be momentum after crash
after crash
m = 5.29+7.65 = 12.94 kg
so for v after crash:
12.94 v = 80.9
v = 6.25 m/s after crash
v at end is zero and energy after crash is conserved so
(1/2)(12.94)(6.25)^2 = (1/2) (67.9) x^2
x^2 = 7.45
and
x = 2.73 meters I agree
time = 1/4 of period T
T = 2 pi sqrt(m/k)
= 2 pi sqrt (12.94/67.9)
= 2.74 seconds
1/4 T = .6857 seconds sure enough
Answered by
bülent
thank you!
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.