Asked by Robbie
A normal distribution has a mean of 100 and standard deviation of 20. What is the
probability of randomly selecting a score less than 130 from this distribution?
a, p=0.9032
b, p=0.9332
c, p=0.0968
d, p=0.0668
probability of randomly selecting a score less than 130 from this distribution?
a, p=0.9032
b, p=0.9332
c, p=0.0968
d, p=0.0668
Answers
Answered by
PsyDAG
Z = (score-mean)/SD
Find table in the back of your statistics text labeled something like "areas under normal distribution" to find the proportion related to the Z score.
Find table in the back of your statistics text labeled something like "areas under normal distribution" to find the proportion related to the Z score.
Answered by
Kristin
First notice they gave you the mean, standard deviation, and an X value. Meaning you can you the formula
I would also draw a distribution picture where the number will end up being.
X = Z * (standard deviation) + (mean)
Plug in the numbers:
130 = Z (20) + 100
Subtract 100 FROM 130:
30 = Z (20)
Divide:
30/20
Your Z-score is:
Z = 1.5
*** Since you are looking for a probability LESS than 130, the probability will be on the LEFT side of the distribution. This means you have to look on your "Unit Normal Table" for a Z score of 1.5 and in the "B" (proportion body) column.
The answer is 0.9332
**Note every table may vary, so look to see what you B column says for the Z score of 1.5.
I would also draw a distribution picture where the number will end up being.
X = Z * (standard deviation) + (mean)
Plug in the numbers:
130 = Z (20) + 100
Subtract 100 FROM 130:
30 = Z (20)
Divide:
30/20
Your Z-score is:
Z = 1.5
*** Since you are looking for a probability LESS than 130, the probability will be on the LEFT side of the distribution. This means you have to look on your "Unit Normal Table" for a Z score of 1.5 and in the "B" (proportion body) column.
The answer is 0.9332
**Note every table may vary, so look to see what you B column says for the Z score of 1.5.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.