Asked by Luma
I am maybe overthinking this, but what is the lim as n-> infinity of |(n+1)/(n+2)|
?
I am trying to use the ratio test to find interval of convergence for the infiinite series (n/n+1)((-2x)^(n-1))
so i did the limit of |(n+1)/(n+2)| but i am wondering if the limit is simply =1, or if it is infinity/infinity so use l'hopital's rule???
maybe i am overthinking it and the limit is just 1.
thank you for your assistance
?
I am trying to use the ratio test to find interval of convergence for the infiinite series (n/n+1)((-2x)^(n-1))
so i did the limit of |(n+1)/(n+2)| but i am wondering if the limit is simply =1, or if it is infinity/infinity so use l'hopital's rule???
maybe i am overthinking it and the limit is just 1.
thank you for your assistance
Answers
Answered by
Reiny
the limit of your problem is 1
as n --> infinity , both numerators and denominator are practiacally the same, with the denominator being one less than the numerator.
e.g. if n = 1 000 000
then we have 1 000 001/1 000 002 , pretty close to 1 wouldn't you say?
as n --> infinity , both numerators and denominator are practiacally the same, with the denominator being one less than the numerator.
e.g. if n = 1 000 000
then we have 1 000 001/1 000 002 , pretty close to 1 wouldn't you say?
Answered by
Steve
since (n+1)/(n+2) = 1 - 1/(n+2) it is clear that as n grows, the value approaches 1.
Yes, L'Hopital's Rule also works, since you have infinity/infinity. taking derivatives gives 1/1 as the limit.
Yes, L'Hopital's Rule also works, since you have infinity/infinity. taking derivatives gives 1/1 as the limit.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.