Asked by Alicia
Find the equation of the tangent plane at the given point.
1)x^2+y^2-z=1 at the point (1,3,9)
2)x^2*y^2+z-40=0 at x=2, y=3
3) x^2+ln(xy)+z=6 at point (4,0.25,2)
For the first one I got the partial fraction in terms of x, y and z and my final answer was -2x+6y-z+2. I don't know if that is right.
For the second one, the back of the book says the answer is -36x-24y+148.
I didn't get the partial fraction with respect to z, I just plugged in x=2 and y=3 for z=-x+2y^2+40 and got 4. Then, my final answer was 36x+24y-140. I don't know how to get negative 4.
I haven't done prob. 3 because I'm not sure what is the right procedure.
1)x^2+y^2-z=1 at the point (1,3,9)
2)x^2*y^2+z-40=0 at x=2, y=3
3) x^2+ln(xy)+z=6 at point (4,0.25,2)
For the first one I got the partial fraction in terms of x, y and z and my final answer was -2x+6y-z+2. I don't know if that is right.
For the second one, the back of the book says the answer is -36x-24y+148.
I didn't get the partial fraction with respect to z, I just plugged in x=2 and y=3 for z=-x+2y^2+40 and got 4. Then, my final answer was 36x+24y-140. I don't know how to get negative 4.
I haven't done prob. 3 because I'm not sure what is the right procedure.
Answers
Answered by
Steve
#1:
∇f = 2x,2y,-1
∇f(1,3,9) = 2,6,-1
plane: 2(x-1)+6(y-3)-1(z-9) = 0
2x+6y-z = 11
#2:
at x=2,y=3, z=4
∇f = 2xy^2,2x^2y,1
∇f(2,3,4) = 36,24,1
plane: 36(x-2)+24(y-2)+1(z-4) = 0
36x+24y+z = 124
#3:
∇f = 2x+1/x,1/y,1
∇f(4,1/4,2) = 33/4,4,1
plane: 33/4 (x-4) + 4(y-1/4) + 1(z-2) = 0
33x+16y+4z = 144
O' course, check my arithmetic
∇f = 2x,2y,-1
∇f(1,3,9) = 2,6,-1
plane: 2(x-1)+6(y-3)-1(z-9) = 0
2x+6y-z = 11
#2:
at x=2,y=3, z=4
∇f = 2xy^2,2x^2y,1
∇f(2,3,4) = 36,24,1
plane: 36(x-2)+24(y-2)+1(z-4) = 0
36x+24y+z = 124
#3:
∇f = 2x+1/x,1/y,1
∇f(4,1/4,2) = 33/4,4,1
plane: 33/4 (x-4) + 4(y-1/4) + 1(z-2) = 0
33x+16y+4z = 144
O' course, check my arithmetic
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.