Asked by serin

analyze the graph of the function. what is the domain of f(x)? f(x)=x^2+x-72/x+7

{x|x is not equal to -7}

there are other answers, but i think its this one, am i correct?

Answers

Answered by Reiny
correct if you denominator is x+7
(the way you typed it, the denominator is x )

I would write the answer as

{x|x ∈ R , x ≠ -7}
Answered by serin
reiny the way you typed it is not an option and yes x+7 is the denominator
Answered by serin
{x|x ‚0 and x ‚ -7}

is the closet to it
Answered by serin
{x|x ‚0 and x ‚ -7}

sorry the not equal signs didn't post
Answered by Reiny
Too bad my answer is not an option.
In the domain it should be stated that x can be any <b>real</b> number except -7

there are different ways to say this, my statement is just one of those ways.

To say {x|x is not equal to -7} does not tell the whole story and in my opinion is insufficient.
Answered by Steve
While technically you are correct, Reiny, I'd have to take the answer in the likely context. This is obviously Algebra II or some such, and we are likely dealing only with real, or maybe complex numbers.

So, restricting our "domain", as it were, to that area, x not equal to 7 pretty much sums it up.

If the problem was multiple choice, then I'd have picked the answer serin gave.

Otherwise, maybe

x real and ≠ 7

or

{x|x real , x ≠ -7}

would have provided the required details.
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions