Asked by Lauren
Standing waves on a string are generated by oscillations having amplitude 0.005 m, angular frequency 942 rad/s, and wave number 0.750p rad/m.
a.) What is the equation of the standing wave?
b.) At what distances from x=0 are the nodes and antinodes?
c.) What is the frequency of a point on the string at an antinode?
d.) If the string is 4m long, how many nodes are there?
a.) What is the equation of the standing wave?
b.) At what distances from x=0 are the nodes and antinodes?
c.) What is the frequency of a point on the string at an antinode?
d.) If the string is 4m long, how many nodes are there?
Answers
Answered by
Elena
y(x,t) =|2•A•coskx|•cosωt,
y(x,t) =|2•0.005•cos(0.750•π•x)| •cos(942•t),
Antinods:
x=m• (λ/2), m=0,1,2,...
The 1st antinode at the origin (m=0),
the 2nd antinode at λ/2 (m=1).
Distance from origin = λ/2
Nodes:
x= (m+½)• (λ/2).
The 1st node at λ/4 (m=0),
the 2nd antinode at 3λ/4 (m=1)
Distance from origin = λ
The frequency is f=ω/2π=942/2 π =149.9 Hz.
λ=2π/k=2π/0.75 π=8/3 (meters).
If the antinode is at the origin, then we have
3 nodes on the distance 4 m at the points:
x=λ/4, 3λ/4, 5λ/4,
and 4 antinodes at
x= 0, λ/2, λ, 3λ/2.
y(x,t) =|2•0.005•cos(0.750•π•x)| •cos(942•t),
Antinods:
x=m• (λ/2), m=0,1,2,...
The 1st antinode at the origin (m=0),
the 2nd antinode at λ/2 (m=1).
Distance from origin = λ/2
Nodes:
x= (m+½)• (λ/2).
The 1st node at λ/4 (m=0),
the 2nd antinode at 3λ/4 (m=1)
Distance from origin = λ
The frequency is f=ω/2π=942/2 π =149.9 Hz.
λ=2π/k=2π/0.75 π=8/3 (meters).
If the antinode is at the origin, then we have
3 nodes on the distance 4 m at the points:
x=λ/4, 3λ/4, 5λ/4,
and 4 antinodes at
x= 0, λ/2, λ, 3λ/2.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.