Asked by Brock

Use mathematical induction to prove that the statement holds for all positive integers. Also, can you label the basis, hypothesis, and induction step in each problem. Thanks

1. 2+4+6+...+2n=n^2+n



2. 8+10+12+...+(2n+6)=n^2+7n

Answers

Answered by Steve
assume true for n=k. Then when n=k+1, we have

2+4+...+2k+(2k+2) = k^2 + k + 2k+2
= k^2 + 2k + 1 + k + 1
= (k+1)^2 + (k+1)

Since true for n=1, true for n=2,3,4...

Similarly,

8+10+...+(2k+6)+(2k+8) = k^2 + 7k + (2k+8)
= k^2 + 2k + 1 + 7k + 7
= (k+1)^2 + 7(k+1)
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions